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Abstract: - In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can 

be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point 

of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect 

separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized 

aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which 

uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in 

this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the 

subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics. 
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Introduction 

 

      Ich sage euch: man muß noch Chaos in sich haben, 

um einen tanzenden Stern gebären zu können.  

      Ich sage euch: ihr habt noch Chaos in euch. 

 

Friedrich Nietzsche, 

"Also sprach Zarathustra: 

 Ein Buch für Alle und Keinen" 

 

The dynamical chaos with its properties and features is well-known important phenomenon 

studied by the modern science in the fundamental exploration [1-6, 13-14, 24-26, 31-33, 37-39, 42-49, 

51-60] and in the broadly presented area of applications [7-23, 27-30, 34-36, 40-44]. Starting from 

works of Jules Henri Poincaré [51] the idea of complex behavior of dynamical systems was developed 

in different formulations, containing, certainly, qualitative theory of ordinal differential equations by 

Andronov A.A., Vitt E.A. and Khaiken S.E. [1], the theory of strange chaotic attractors, initiated by 

Edward Lorenz [43], the KAM-theory by Kolmogorov A.N., Arnold V.I., Moser J. [3-5, 31, 46], the 

Poincaré-Arnold-Melnikov-methodology for the transverse homoclinic points detection and homoclinic 

splitting analysis [3, 45], including its multidimensional versions developed by Wiggins S., Holmes P.J., 

Marsden J.E. [26, 57], and many other important aspects and research results together with problems of 

the integrability in nonlinear dynamics [6, 32, 33, 55], the chaos control [13-16, 25-27], and the 

synchronization in chaotic systems [14, 49].  

The chaos in the role of irregular perturbations usually is considered as the negative aspect of 

systems dynamics and as the harmful process. Therefore, practically in all applied tasks it is needed to 

try to eliminate the dynamical chaos or to suppress its action on main dynamical properties [7-12, 15-23, 
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26-29, 34-36, 40, 41, 48-50].  

In the contrast to typical negative assessments of systems chaotic behavior, in the presented paper 

the dynamical chaos is explored in its positive content as the dynamical instrument, which can change 

and improve systems dynamics in the qualitative and quantitative sense. 

It is well-known fact that phase spaces (phase portraits and/or their cross-sections) of unperturbed 

dynamical systems represent sets of phase trajectories in the shape of separable regular curves without 

(self)intersections. At the action of perturbations, these regular sets are supplemented by irregular 

complex tangles of phase trajectories, including homo-/heteroclinic nets, which produce so-called 

chaotic layers. Figuratively speaking, phase spaces of perturbed dynamical systems contain “islands” of 

regularity and chaotic “seas” [12, 54]. It is worth to remind, that in cases of the perturbations 

deactivation the overwhelming majority of dynamical systems return to their natural unperturbed and 

fully deterministic dynamics (first of all, this refers to Hamiltonian systems). In other words, the 

deactivation of perturbations “desiccates chaotic seas” and the system phase point falls into the regular 

region on “the seabed” of unperturbed phase portrait.  

This structure of the perturbed phase space theoretically allows to transport the phase point into 

any phase region “by the surface of the chaotic sea” crossing separated and impenetrable phase 

trajectories on the corresponded “seabed” of the unperturbed phase portrait. So, it is possible to consider 

the chaos as a hub connected separated zones of the unperturbed phase space/portrait. Through this hub 

the systems dynamics can sometime reach any desired “island” of regularity, because in this chaotic case 

the phase point forms the complex chaotic phase trajectory, which visits all positions of the available 

phase volume of the chaotic sea due to dynamical mixing properties. 

The indicated creation of the chaos in its concrete technical implementation can be realized by 

system’s available dynamical actuators and special techniques of the system control. This intentional 

chaotization of the system dynamics is possible, for example, by the way of the transition of the phase 

trajectory closer to the separatrix (in the homo/heteroclinic area) with subsequent initiating harmonic 

perturbations in the motion parameters by available actuators [19, 20]. In addition to the 

homo/heteroclinic technique, the chaotization can be realize by the second way with the help of the 

intentional creation of strange chaotic attractors into systems dynamics with the help of available 

actuators [20]. Here we ought to note, that described ways of the chaotization allow not only 

instantaneous enable the chaos in the system, but also instantaneous disable it at any time. 

Summing up above-mentioned statements, we are ready to offer the method of positive using 

chaos to change the system dynamical parameters in quantitative and qualitative aspects. This method is 

based on the intentional chaos creation with the subsequent achievement of desirable dynamical 

parameters in the framework of the chaotic dynamics implementation, and with instantaneous disabling 

the chaos after this achievement. As the result, after the passage through the chaos we will have a new 

dynamical behavior and a new dynamical quality of the system obtained due to the natural properties of 

chaos, as it is figuratively, but meaningful sounded by Friedrich Nietzsche in the epigraph. Then the 

main algorithm of this method are defined by the following conceptual steps (fig.1): 

1. The initial step (#1): the system starts its dynamics in some initial regular regime.  

2. The intermediate step (#2): the chaos into the system dynamics is intentionally initiated by the 

control system with the help of the special dynamical technique, so the system is intentionally “jump 

into the chaos” and implements the chaotic motion with the expectation of desirable parameters and the 

fulfillment of required criteria, which are tracked by the control system.  

3. The final step (#3): At the satisfaction of necessary criteria, the control system immediately 

switches off the chaos, and the system proceeds to the new desired regular regime. 
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As can we see, in the framework of the suggested method the dynamical chaos represents the 

positive dynamical opportunity, which allows to proceed to the extended dynamics linking separated 

phase-regions in the phase space, so it is possible to characterize the dynamical chaos as the hub of 

systems dynamics. From the philosophical point of view, this interconnecting role of the chaos is very 

important theme of scientific research. 

We can locally conclude that chaos is not only a harmful dynamical phenomenon, but also it is an 

opportunity; and, moreover, chaos is the hub of opportunities. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 – The schematic algorithm of positive using chaos to change the system dynamics  

 

In the next sections of the paper, the concretized scheme of the “chaotic” attitude control of 

magnetized gyrostat-satellites is developed, which uses the passage through the intentionally generated 

homo/heteroclinic chaos. This type of chaos in fact was fundamentally predicted in the work of Poincaré 

[51], and also were described in applied tasks of spacecraft (SC) attitude dynamics in many works, e.g. 

[12, 17-21, 27-29]. 

The attitude dynamics of the satellite/spacecraft at the heteroclinic “chaotic” control represents the 

series of transitions from the initial dynamical regime (the initial area of the phase space with initial 

values of angular velocities and spatial angles) to the perturbed heteroclinic regime with the subsequent 

exit into the final target dynamical regime (the final area of the phase space with target values of angular 

velocities and spatial angles). The transitional heteroclinic perturbed regime is created by the gyrostat-

rotor spinup-procedure with corresponding passage of dynamics into the heteroclinic area of the phase 
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space and with enabling perturbations of own magnetic dipole moment of the satellite/spacecraft in the 

harmonic form by the magnetic torquer. This harmonic magnetic dipole moment interacts with the 

geomagnetic field, which, in its turn, produces the heteroclinic chaos as the positive dynamical regime, 

which allows to fulfill the desirable spatial reorientation of the satellite. After the destination of the 

target area of the dynamical phase space the harmonic magnetic perturbation turns off, and then the final 

motion of the satellite will remain in this final area of the phase space with target values of angular 

velocities and spatial angles.  

As it will be shown in the next section, the suggested chaotic control scheme in the technical sense 

can be realized by the way of simple actuators using [19, 20]: there is needed only one longitudinal 

reaction wheel (with the controlled rotation velocity) and a simple “perturbing” device for the creation 

of internal harmonic torques, which initiates the heteroclinic chaos. In the role of this “perturbing” 

device it is possible to use the same reaction wheel’s electromotor or the simple magnetic actuator. This 

constructional/functional simplicity defines the possibility of real applications of the chaotic control 

scheme as attitude control systems even for simplest and smallest types of SC, including nanosatellites. 

Moreover, the chaotic control scheme can be also selected as the backup attitude control system 

for the salvation of space missions of full-featured spacecraft/satellites, which could be activated in 

cases of failures of the main control system, when chances of the main system recovering are lost. In 

these accidents, the chaotic control scheme could provide quite acceptable regimes of the further 

operation of the rescued SC. 

 

1. Mechanical and mathematical models 

 

The considered task of the realization of the chaotic control of SC is based on the well-known 

mechanical and mathematical models of the attitude dynamics of the rigid body with the internal rotor 

(coaxial bodies; dual-spin spacecraft; one-rotor gyrostat) contained magnetic actuators (magnetic 

torquers). The internal rotor’s angular velocity can be controlled by the electro-engine. This 

electromotor can be used for the spin-up/spin-down of the rotor relatively the main body, and also it can 

produce the harmonic torque for the initiation of the perturbations of the angular velocity. The magnetic 

actuator generates the own dipole magnetic moment of the SC to interact with the external 

(geo)magnetic field and to create the external torque. These magnetic actuators controlled by the control 

system can form the harmonic time-dependencies of the vector of the own dipole magnetic moment. 

The schematic structure of the SC and the necessary coordinates frames are presented at the figure 

(fig.2). The main coordinates frames include the inertial frame CXYZ and the frame Cxyz connected 

with the main body of SC. The inertial axis CZ is selected/defined along the initial unperturbed position 

of the vector of the system angular momentum K; at that the rotor-body has the absolute longitudinal 

angular momentum Δ. 

In the framework of our research, we describe the motion of the SC as the series of the free motion 

regular regimes and the chaotic intermediate regimes, which can be created with the help of small 

perturbed torques formed by the actuators (the internal electromotor of the rotor-body and the magnetic 

torquer).  

The magnetic torquer produces the control torque as the result of the interaction of the own magnetic 

dipole moment of the SC (m) with the external (geo)magnetic field (with the corresponding magnetic 

induction vector Borb): 

 

ctrl orb M m B                     (1.1) 
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Fig.2 – The SC schematic construction and coordinates systems 

 

Let us consider the vector Borb as the constant vector in the inertial space due to consideration of the 

task on the short segment of the orbital motion, and, therefore, the components of this vector in inertial 

frame CXYZ are constant Borb=[BX, BY, BZ]T. The direction of the vector of the magnetic induction Borb 

of the external field in the connected frame Cxyz we will describe by the directional cosines 

 1 cos , ,orb  B i   2 cos , ,orb  B j   3 cos , .orb  B k  Then we can write the following components of 

the magnetic induction vector Borb, the magnetic dipole moment m and the control torque in the 

connected coordinates frame Cxyz: 

 

       1 2 3

3 2 1 3 2 1

, , ; , , ;

; ;

TT

orb orb x y z

T

ctrl orb y z z x x y

B m t m t m t

B m m m m m m

       

           

B m

M

         (1.2) 

 

 The motion equations of the SC with one internal rotor-body can be written in the vector form [17] 

together with the kinematical equations for the directional cosines (relatively the connected axes Cxyz) 

for the unit vectors {eX, eY, eZ} of the inertial coordinates system CXYZ {αi, βi, γi}, and for directional 

cosines {Γi} of the constant vector Borb:  

 

;ctrl internal

d
M

dt
    K ω K M               (1.3) 

; ;

;

     
 

     

α α ω β β ω

γ γ ω Γ Γ ω
                  (1.4) 

 

where internalM   is the value of the internal longitudinal torque acting on the rotor from the side of the 
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main body through the electromotor.  

The angular momentum K and the longitudinal (along the Cz) angular momentum of the rotor-body 

have the following projections on axes of the connected frame Cxyz: 

 

   , , ;
T

b rAp Bq C r C r     K                 (1.5) 

 

Here ,b rA A A   ;b rB B A   and  , ,b b bA B C  correspond to the axial inertia moments of the main SC 

body in the connected frame Cxyz; and  , ,r r rA A C  represent the axial inertia moments of the 

dynamically symmetrical rotor in its own connected frame; [p, q, r]T – are components of the vector of 

the angular velocity of the main body in the connected frame Cxyz, σ – is the angular velocity of the 

rotor rotation relative the main body (along the Cz). Let us assume that b b b r rA B C A C    . 

The main dynamical equations of the SC attitude motion have the form: 

 

   
   

   

3 2

1 3

2 1

;

;

;

b orb y z

b orb z x

b orb x y

internal

Ap C B qr q B m m

Bq A C pr p B m m

C r pq B A B m m

M

        

        


       

 

         (1.6) 

 

The well-known Euler angles (fig.2) also will be used in this research; the corresponding kinematical 

equations for the Euler angles have the form:  

 

cos sin ;

( sin cos ) sin ;

ctg ( sin cos )

p q

p q

r p q

  

   

   

  


 
   

                (1.7) 

 

As it already were indicated above, the magnetic control torque and the internal torque Minternal are 

formed by the actuators as perturbing dynamical factors for the creation of the intermediate chaotic 

regime, connected the initial and final regimes of the SC free motion. Moreover, we define these 

perturbations in the simplest harmonic form, which can be easy realized by the actuators. So, these 

torques, firstly, are small and, secondly, are limited in time of their operation during the chaotic regime 

implementation, that mathematically is expressed as follows: 

 

       

       

sin ;

cos ,

i i start finish i

internal start finish

m t t t t t t

M t t t t t t



 

       
 





        

         (1.8) 

 

where μi, μΔ are small values of corresponding perturbing factors (i=x, y, z); ΩΔ and Ωi are frequencies 

of harmonic perturbations; Η(t) is the is the Heaviside function; tstart and tfinish are the time-points of the 

perturbations enabling and disabling. We should note, that for the chaos creation we can use the both 

perturbing factors (μi, μΔ) together and/or separately one of them. 
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2. The canonical form of the dynamical model in the Serret-Andoyer-Deprit variables 

 

Let us build the Hamiltonian form of equations using the well-known [e.g. 32, 33] canonical 

Serret-Andoyer-Deprit variables ({φ3, I3}, {φ2, I2}, {l, L}): 

2 3

2 3

; ;
T T T

L I K I
Kl  

  
          

 

K
K k K K K k       (2.1) 

We already assume the relative smallness of the magnetic torque (1.1) (as it follows from (1.8) inside 

the time-interval [tstart, tfinish]). Then in the generating case (at the formal consideration of the dynamics 

without any perturbations) the angular momentum K will be constant vector of the torque-free motion. 

In our case (when the vector K is co-directional with CZ) the canonical variables reduce to two pares 

({φ2, I2}, {l, L}) that is depicted at the fig.2, and the following correspondences with the Euler angles 

are fulfilled: 

 

2 3

2 2

2 2 2 2

2 2

; ; 0;

; cos ;

sin

l

I K L I L K

I L I K L K

   





   


  


   

                (2.2) 

 

The angular momentum components are linked with the canonical momentums as follows: 

 

2 2 2 2

2 2sin ; cos ;x y z bK Ap I L l K Bq I L l K C r L            (2.3) 

 

The Hamiltonian of the system has the following form in the Serret-Andoyer–Deprit variables: 

 

 

1

22 2 2 2 2

2

0 0 0 0 1 1 1

0 0

;

sin co

; ;

s 1
; 0;

2 2 r b

LI L l l
T P

A B C

T P T

C

P   

    
      

 

   

   

       (2.4) 

 

where T0 is the expression for the kinetic energy (for the unperturbed system), P0 is the part of the 

potential energy (in the framework of this consideration it is equal to zero), and 1  is the small part 

of the Hamiltonian which describes possible small (proportional to the small parameter ε) perturbations 

acting on the system. To write the expressions for the perturbed part of the potential energy it is needed 

to consider the magnitude of the magnetic torque (1.1) with integrating it by the corresponding 

positional angle  , orb  m B  - it is possible by the way of the evaluation of the scalar production of 

vectors through the components in the inertial frame: 

 

1

1 2 3

1 2 3

1 2 3

sin ;

cos

ctrl orb orb

ctrl orb orb

x X

y Y

z Z

P d

m B

m B

m B



  

  

  

  

  

       

      
      

         
            



M m B m B

M m B m B          (2.5) 
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In the considered research, when the axis CZ coincides with the generating (unperturbed) vector of the 

angular momentum K, using (2.2) and well-known expressions for the Euler angles, the following 

expressions for the directional cosines through the Serret-Andoyer–Deprit variables can be written: 

 

 

 

 

 

1 2 2 2

2 2 2 2

2 2

3 2 2 2

1 2 2 2

2

cos cos cos sin sin cos cos sin sin ;

sin cos cos sin cos sin cos sin cos ;

sin sin sin ;

cos sin cos cos sin cos sin cos sin ;

sin sin cos cos

l L I l

l L I l

I L I

l L I l

       

       

   

       

    


   


     


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

   

    

 

 

 

2 2 2

2 2

3 2 2 2

2 2

1 2 2

2 2

2 2 2

3 2

cos sin sin cos cos ;

sin cos cos ;

sin sin sin ;

sin cos cos ;

cos

l L I l

I L I

I L I l

I L I l

L I

  

   

  
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 













  


    

   

   

  


   (2.6) 

 

Then the perturbed part of the potential energy (2.5) described by the Serret-Andoyer-Deprit variables 

can be obtained with the help of connections (2.6): 

 

       1 2 2 1 1 1 2 2 2 3 3 3, , , x X Y Z y X Y Z z X Y ZP l L I m B B B m B B B m B B B                     (2.7) 

 

Let us, however, to consider a particular case of the magnetic perturbation when the own dipole 

magnetic moment m has only one longitudinal component mz. It is quite enough for solving the problem 

of the motion intentional chaotization. Then the following perturbed part of the potential takes place: 

 

 2 2

1 2 2 2

2

sin cosz
X Y Z

m
P I L B B B L

I
       

 
         (2.8) 

 

If we take into account the action (inside the time-interval [tstart, tfinish] of the perturbed motion) of the 

harmonic perturbation from the internal rotor engine, then the solution for perturbed angular momentum 

  of the rotor-body follows after independent integrating the last equation (1.6): 

 

   sint t






   


                    (2.9) 

 

The substitution of the solution (2.9) into the expression for the Hamiltonian (2.4) rejecting terms of the 

second order  2O   gives the perturbed part of the kinetic energy: 
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1 sin
r b

L
T t

C C


 





  
   
  

                (2.10) 

 

Expressions (2.10) and (2.8) define the perturbed part of the Hamiltonian of the perturbed motion with 

the simplest intentional harmonic perturbations in the magnetic dipole and in the internal rotor’s engine, 

that is fulfilled with the aim of the intentional chaos creation. Then it is possible to write the equations 

for the canonical Serret-Andoyer-Deprit variables, which describe the perturbed dynamics (inside the 

time-interval [tstart, tfinish]): 

2 2

2 2

2

2

;;

;;

I IL L

l l

I f gL f g

f gl f g  


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and in view of (1.8) 
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where ;X X Z Y Y Zb B B b B B   and the dimensionless small parameter ε is involved: 
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         (2.14) 

 

with the corresponding factors of the relative smallness of the perturbations  ; z ze e      .  

 

 At the end of this section, we present the structure of the phase space of unperturbed generating 

system (fig. 3) in the Serret-Andoyer-Deprit variables (fig.3-a) and in the space of the angular velocity 

components in the form of the so-called plhodes ellipsoid (fig.3-b) at the assumption that Ab>Bb>Cb. 
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The unperturbed Serret-Andoyer-Deprit phase dynamics has one noncyclic degree of freedom (as it 

follows from (2.11) at ε=0) and can be fully described by the phase plane {l, L}. The phase trajectories 

in both cases (fig. 3) represent the closed lines (tacking into account the identification of points of the 

Serret-Andoyer-Deprit phase trajectories at the values l=0=2π). Both types of phase spaces/portraits 

contain two heteroclinic points (S1 and S2), which are connected by the heteroclinic orbits/trajectories, 

which also are called as separatrices. As it is known and as it will be demonstrated in the next section, 

exactly these heteroclinic trajectories will split at the action of perturbations and will generate the 

heterocinic nets/tangles – this is the reason of the chaotic dynamics creation in the neighborhood of 

heteroclinic trajectories, that is called as the heteroclinic chaos. 

 

       
(a)                        (b) 

Fig.3 – The phase spaces of the generating system 

 

3. The preliminary numerical overview of the chaotic behavior of the perturbed system 

 

 Now it is possible to obtain some numerical results to explain main properties of the chaotic motion 

of the perturbed system. First of all, we will build the cross-sections of the system phase space in the 

Serret-Andoyer-Deprit variables. From the equations (2.11) with expressions (2.13) we can see that the 

system formally has two degrees of freedom ({φ2, I2}, {l, L}) at the action of both types of perturbations 

(1.8) (inside the time-interval [tstart=0, tfinish=∞]); and also it has the additional (fifth) dimension 

corresponded to the time due to the non-autonomous form of perturbations. Therefore, we need to make 

the well-known Poincaré-section and to analyze some projections of the phase portrait (fig.4). In this 

work the Poincaré-sections are plotted on the base of the “stroboscopic condition” when the points of 

phase trajectories are added to the phase portrait at the fulfilling the equality: 

 

   mod ,2 0; sup , zt                   (3.1) 
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Fig.4 – The three-dimensional Poincaré section and it’s projections 

 

Let us present the series of Poincaré sections in projection on the plane {l, L/I2(0)} which contains the 

more important information about the phase space of the system and about the perturbed heteroclinic 

area (fig.5, 6). These sections are plotted in the interests of the comparative analysis of the dynamics at 

different perturbations and the system parameters (fig.5) presented in the table (tabl.1).  

As can we see, the sections obtained at the internal perturbation action (fig.5-a, c, e, g, i) have clearly 

marked separations of phase zones including the primary and secondary “chaotic layers” in heteroclinic 

regions. In cases of external magnetic perturbations the Poincaré sections projections (fig.5-b, d, f, h) 

have blurred forms due to the greater dimension of the phase space in comparison with cases of internal 

perturbations (when forms are precise). 

Undoubtedly, the presented at the figures (fig.4, 5) Poincaré sections were plotted at the hypothetical 

dynamical parameters (tabl.1) which conditionally and tentatively correspond to real SC and torquers. 

These hypothetical parameters were selected as the appropriate values for the chaotic regimes 

illustration and for the chaotic reorientation of SC demonstration. However, the values of dynamical 

parameters for the phase portrait at the fig.6 are quite applicable to the consideration of the real 

dynamics of small SC in the real geomagnetic field at the motion of micro-spacecraft and/or nano-

satellites along the low orbit (Borb~50 [μT]) with powerful magnetic torquers (m~40 [A∙m2]). 
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             (a)                       (b)     
 

  
            (c)                       (d)     
 

 
            (e)                       (f)     

Fig.5 – The Poincaré sections of the perturbed phase space 
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            (g)                       (h)     
 

  
            (i)                       (j)     

Fig.5 (continuation) 
 

Table 1. Parameters of the perturbed system dynamics 

Fig. 
A, 

kg*m2 

B, 

kg*m2 

Cb, 

kg*m2 

I2(0), 

kg*m2/s 

Δ, 

kg*m2/s 
bX bY 

μzBZ, 

N*m 

μΔ, 

N*m 

ΩΔ, 

1/s 

Ωz, 

1/s 

4 

20 15 6 76 

76/3 1/4 3/4 8 0 - 2π 

5-a 0 - - 0 10 2π - 

5-b 0 1/4 3/4 8 0 - 2π 

5-c 76/3 - - 0 10 2π - 

5-d 76/3 1/4 3/4 8 0 - 2π 

5-e 45 - - 0 10 2π - 

5-f 45 1/4 3/4 8 0 - 2π 

5-g -45 - - 0 10 2π - 

5-h -45 1/4 3/4 8 0 - 2π 

5-i,j 0 - - 0 150 2π - 

6-a 

0.2 0.15 0.06 0.76 0 1/3 1/3 0.002 

0.0 - π/10 

6-b 0.1 π π/10 

6-c,d 0.5 π π/10 
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            (a)                       (b)     

 

  
            (c)                       (d)     

Fig.6 –The Poincaré sections for the micro-/nano-satellite case 

 

Here we separately note the pair of the Poincaré sections (fig.5, fragments i and j) – these sections 

were obtained at the large value of the internal perturbation for the identical initial conditions and for 

the same dynamical parameters. The fragment (fig.5-j) contains points of one single phase trajectory 

started from the heteroclinic region. This perturbed phase trajectory, as can we see, passes through 

almost the entire accessible area of the phase space and independently of the other generates the so-

called chaotic layer (“chaotic sea”). The same situation is presented at the pair of sections (fig.6, 

fragments c and d) for the case of micro-SC/nano-satellites. This dynamical fact confirms the possibility 

of the implementation of the “chaotic” attitude control described in the introduction, because in this case 

we have the chaotic sea linking all phase zones, which become available to all initially separated (in the 

unperturbed dynamics) phase trajectories “covered by this sea”. In other words, each perturbed phase 

trajectory from this chaotic layer can arrive any linked zone of the phase space and continue new 

unperturbed dynamics in new dynamical regions after perturbations disabling.  

 In addition, it is needed to give some comments about the comparative analysis of the internal 

(Minternal) and external magnetic (Mctrl) perturbations relatively the efficiency of the chaotic layer 
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creation, which is the important part of the method of the chaotic attitude control of SC (especially 

micro-SC/nano-satellites). From the fragment (fig.6-a) we can see, that the taken separately magnetic 

perturbation generates the narrow chaotic layer in the comparison with the case of the conjoint action 

together with the small internal perturbation (fig.6-b). This circumstance characterizes the magnetic type 

of perturbations as small and “slow”, but quite realizable. The internal perturbations from the rotor 

engine undoubtedly are more fast and effective in the sense of the chaotic motion creation: the fragment 

(fig.6-d) shows the points of one single perturbed phase trajectory filling practically the entire volume of 

the phase space. So, the both types of perturbations can be applied separately or jointly to the 

heteroclinic chaos creation, that allows to construct the appropriate actuator for the implementation of 

the method of the chaotic attitude control. 

 

4. The method of chaotic attitude control of the SC by using homo/heteroclinic chaos-hub  

 

As it was indicated above, the chaos can be used in the role of the dynamical hub linking separated 

zones of systems phase spaces. Due to the natural suppleness of homo/heteroclinic regions of systems 

phase spaces to the dynamical chaos generation at the action of small perturbations, we can suggest the 

type of heteroclinic chaos as the primary simplest technique to implement the SC attitude control by the 

way of the “chaos-hub” creation. 

 In the introduction the main conceptual scheme of the chaos-hub was described in the framework of 

systems dynamics changing (fig.1). This general scheme can be adopted to the task of the chaotic 

attitude control of SC and its dynamics quality alteration [19, 20].  

 Primarily, let us give necessary comments about the possible angular/attitude motion of the torque-

free SC with internal rotor (it also is called as the dual-spin spacecraft or the gyrostat-satellite). It is 

needed to emphasize four main zones (A-D) and types of the torque-free angular motion (fig.7). In 

addition, we should indicate separately the heteroclinic zone-H (fig.7-c), which is born from the 

unperturbed heteroclinic trajectories S1S2 (fig.3) at their splitting at the action of perturbations, that 

produces the heteroclinc net and the corresponding chaotic layer (the “chaotic sea”). 

The first type of zones is the A-zone. In the A-zone the SC has the attitude dynamics usual in space 

missions, when its longitudinal axes (Cz) fulfills the rotational motion around the vector of the angular 

momentum K with oscillations relatively small values of the nutation angle θ (fig.7-d). Then the SC also 

rotates around the Cz in positive direction; so, we have the motion with the positive precession velocity 

( 0  ), positive intrinsic rotation velocity ( 0  ) and small oscillated nutation. In other words, in this 

mode the SC rotates preferably around its own main longitudinal axes Cz. This regime of the angular 

motion corresponds to the stabilized rotation of the SC with the conservation of the main direction of 

longitudinal axes – this regime is called as gyroscopic stabilization, and it represents the most efficient 

and desirable regime for the dual-spin spacecraft and for the gyrostat-satellite, because this regime 

provides the stabilization of the spatial direction of the spacecraft’s equipment (antennas, telescopes, 

solar panels, etc.). In ideal conditions, the longitudinal axes Cz fully coincides with the vector of the 

angular momentum (then L/I2=1) with the zero-value of the nutation; nevertheless, the whole A-zone is 

the quite acceptable for space-flight applications, and, in the first place, for the micro- and nano-

spacecraft/satellites. 
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(a)               (b)                 (c) 

 

 
 

(d)                (e)                 (f) 

 

Fig.7 – The main phase zones of the angular motion of the torque-free spacecraft 

 

The dynamics in the B-zone is the “antipode” to the dynamics in the A-zone, when the direction of 

the longitudinal axis Cz is opposite to the vector of the angular momentum K (fig.7-e), but this axis as 

before rotates around K, with blunt nutation angles. The rotation of the SC is still fulfilled preferably 

around its own longitudinal axes but in the negative directions, i.e. the angular motion has the positive 

precession velocity, the negative intrinsic rotation velocity, and substantially large values of the 

nutation. 

For the dynamics in the C-zone we have the preferably rotation about the transversal axes Ox, which 

fulfills the positive precessional rotation around the angular momentum vector K (fig.7-f). The angle of 

intrinsic rotation in the C-zone fulfills the periodical oscillations around the value φ*=π/2. So, this type 

of motion usually is considered as the worst regime in the sense of the spatial orientation for the spin-

stabilized SC, because in this case the SC moves sideways relative the main stabilized spatial direction 

(the direction of K).  
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The dynamics in the D-zone is practically the same that the dynamics in the C-zone: the preferably 

rotation of the SC implements about the transversal axes Ox, but the angle of intrinsic rotation fulfills 

the periodical oscillations around the value φ*=3π/2 (i.e. the SC main body is turned by the other side in 

the comparison with the C-zone). The type of motion in the D-zone, like the previous C-zone motion, is 

the undesirable regime for the spin-stabilized SC. 

 The H-zone appears in the phase portrait only at the action of the perturbations and covers itself the 

parts of areas of all main zones (A-D). The H-zone is filled by split heteroclinic trajectories, generating 

the heteroclinic net and chaotic layer. All incoming into this zone phase trajectories fulfill complicated 

motion passing through covered parts of the main zones. Therefore, the corresponding dynamics of the 

SC in the H-zone alternates in the time the properties of all main zones (A-D).  

 As we already indicated, the most important and applicable for the gyrostat-satellite zone is the A-

zone where the longitudinal axes of the SC is oriented and spin-stabilized in the direction of the angular 

momentum vector K.  

The satellite can take at the launching (at the separating from the upper stage) the arbitrary spatial 

orientation and can proceed to the attitude motion in any phase zone (A-D). Therefore, it is very 

important to change the initial phase zone of the SC motion, and to move the dynamics into the 

necessary phase zone (and mainly into the A-zone). The change of the SC dynamics, certainly, can be 

realized by many ways and with the help of different actuators. In this research, this task is solved by the 

way of the creation of the heteroclinic chaos with the entering phase trajectories into the H-zone and 

exiting from it in the target-area. Then from the main scheme of the chaos-hub method (fig.1) the 

following detailed algorithm can be constructed: 

1. The SC realizes the initial regime of the free angular motion. 

2. The control system begins to create the constant spin-up/spin-down torque by the internal rotor-

engine, that increase/decrease angular velocity of the rotor and of the main body until the 

heteroclinic regime will be achieved (it can be defined by a specific criterion). 

3. The control system switches to the creation of the small harmonic perturbations (by the internal 

rotor-engine and/or by the magnetic actuator) to generate and to support the heteroclinic chaos. 

The SC realizes the chaotic motion with monitoring the current dynamical parameters waiting 

for the arrival of the phase trajectory into the target-zone of the phase space through the chaotic 

layer (it can be defined by specific criteria). 

4. After the arrival of the phase trajectory into the target zone, the control system immediately stops 

the perturbations, then the heteroclinic chaos vanishes, and the SC dynamics proceeds to the new 

regular regime in the target-zone of the phase space. 

5. (This step can be realized optionally) If it is needed to move up/down the new regular phase 

trajectory relatively the phase portrait, we can fulfill the step #2 in its back direction. 

 

Now we should give some explanations to the implementation of the algorithm steps.  

The step #1 corresponds to the natural initial regular motion of the SC, and there is not additional 

aspects to underline.  

In the framework of the step #2, the internal constant torque is initiated in the unperturbed system to 

change the current regime on the heteroclinic one. This piecewise constant torque is applied to the rotor-



PREPRINT 10.1016/j.cnsns.2017.11.008 

 

body with the aim of spin-up/spin-down its angular velocity, and to move the separatrixes area up/down 

on the phase portrait: 

 

    spin ini heteroM H t t H t t                  (4.1) 

 

where Mspin – is the constant, H(t) – the Heaviside function, tini is the time-point of the start of maneuver 

realization, thetero – the time-point of the heteroclinic regime achievement. It is clear, that on the time-

interval [tini, thetero] the angular momentum of the rotor-body varies linearly   ini spint M t     , 

which simultaneously changes the phase portrait [18]. If we consider the series of small separated steps 

with the graceful changing the -value, then we see, that during the -value increasing/decreasing the 

separatrix-region will gradually moving up/down at the phase portrait (e.g., it is presented at fragments 

(fig.5-a, -c, -e) as the rising heteroclinic zone at the -value increasing). Moreover, at the “critical” 

increasing the -value [18] the heteroclinic region is raised up to the border level (L/I2=1) of the phase 

portrait (fig.5-e); and analogously, at the “critical” decreasing the -value [18] the heteroclinic region is 

mowed down on the border level (L/I2= -1) of the phase portrait (fig.5-g). Therefore, the heteroclinic 

zone (H-zone) can be moved to the appropriate level corresponding to the initial regime (L0/I2) by the 

simple way, i.e. by the spin-up/spin-down of the rotor with the help of the action of pricewise constant 

torque. In other words, by this way we can create the heteroclinic region in any necessary phase space 

area. So, it is possible to implement changing any initial regime to the heteroclinic one, and fully realize 

the step #2 of the algorithm. 

Here it is important to indicate, that the time-point thetero is not the predefined value – it must be 

identified by the control system during the rotor spin-up/spin-down process. This identification is based 

on the condition fulfilling, when the values of the angular velocity components satisfy to heteroclinic 

phase trajectories; and, as it follows from the analytical solutions [17], this time-point will be defined by 

the criterion: 

 

 
 

 
 

 
hetero

b b b

t A A B
if r t p t then t t

B C C B C


   
     

   

      (4.2)  

 

where ξ is an acceptable small “proximity”  0 1   of the current phase trajectory to the 

unperturbed separatrix, which can be selected as the precision parameter at the control system 

development. 

 The step #3 is fulfilled after initiation of the SC motion close (with the small proximity ξ) to the 

unperturbed heteroclinic dynamics. This step represents the perturbed motion at the action of the 

internal and/or external (magnetic) perturbations – this perturbed dynamics already was described 

mathematically in the section 2 and considered numerically in the section 3. As it is formulated above 

(1.8), the perturbations start their own action at the tstart time-point (tstart>thetero) and operate until the 

time-point tfinish. In this time-interval [tstart, tfinish] the SC implements the chaotic motion in the H-zone 

and the control system monitors the current dynamical parameters in each time-point with checking the 

entry criteria for the target-zone. The entry conditions can be obtained from the analytical consideration 

of the heteroclinic trajectories [17] with the analysis of the geometry of the polhodes location (fig.7-b).  

For the A-zone the entry criteria are: 
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For the B-zone the entry criteria are: 
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             (4.4) 

 

For the C-zone the entry criteria are: 
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             (4.5) 

 

For the D-zone the entry criteria are: 
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             (4.6) 

 

The fulfillment of the entry criteria for the necessary target-zone defines the time-point tfinish when the 

heteroclinic chaos should be immediately stopped. 

The step #4 corresponds to immediately disabling the perturbations at the defined time-point tfinish. 

After that, the SC will implement the final regular regime in the target-zone of the phase space. 

 

 

6. The numerical modelling of the chaos-hub method implementation 

 

In this section, we present the numerical modelling of the chaos-hub method, which used the 

algorithm described in the section 5 in all details. In this section three cases of the reorientation are 

demonstrated: the case “CHA” of the passage to the final main A-zone through the chaos-hub (the H-

zone) starting from the initial main C-zone (fig.8); the case “BHA” of the passage to the final main 

A-zone through the chaos-hub starting from the initial main B-zone (fig.9); the case “AHC” of the 

passage to the final main C-zone through the chaos-hub starting from the initial main A-zone (fig.10). 

The corresponding values of the parameters are indicated in the table (tabl.2). All cases use the external 

magnetic perturbations to the chaos-hub creation, that, certainly, could also be easy fulfilled with help of 

the internal perturbation in the rotor-body spin-up-engine. For all calculations the common parameters 
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are selected: bx=by=0; μΔ,=0 [N*m]; A=20, B=15, Cb, =6 [kg*m2]. For the considerations convenience 

the step of the chaos-hub initiating in all calculations begins at the tstart=0 for all cases.  

Let us firstly to show the numerical time-dependencies for the angular motion parameters at the 

passage “CHA” (Fig.8). At the fragment (fig.8-a) is depicted the time-history of the nutation angle, 

where color areas indicate the main stages of the algorithm implementation: 

1. The gray area corresponds to the initial regular regime (in the C-zone), started its own realization 

at the time t0.  

2. The blue area coincides with the time-interval [tini, thetero] of the action of the spin-down torque 

(the value Mspin is negative) to arrive into the heteroclinic region.  

3. The pink area represents the motion in the unperturbed heterolinic regime during the time-interval 

[thetero, tstart].  

4. At the time-point tstart the activation of the perturbation is executed, and then the chaotic dynamics 

of the SC realizes in the created H-zone until the control system generates the command to exit from the 

heteroclinic chaos at the time-point tfinish when the criterion (4.3) is fulfilled – this wandering in the 

chaos is corresponded to the yellow area (also this chaotic phase trajectory is separately plotted at the 

fragment fig.8-e).  

5. Immediately after the time-point tfinish the SC will realize the new regular regime in the A-zone, 

that is depicted as the green area. 

 

In the fragment (fig.8-f) the control chart for selecting the tfinish time-point is shown, where light-green 

rectangular pulses correspond to the time-intervals of the fulfillment of the criterion (4.3) during the 

implementation of the chaotic wandering in the H-zone. Inside such time-intervals the control system 

can select any time-point to jump from the heteroclinic chaos into new regular regimes in the A-zone; 

after this jump the dynamics always realizes in the target-zone. 

Fragments (fig.8-b, -c, -d) contain the time-histories for the angular velocity components. 

The analogous parameters time-histories for the passages “BHA” and “AHC” are presented at the 

figures fig.9 and fig.10, where also the time-dependencies φ(t) and ψ(t) are shown (fragments “e”).  

 

 

Table 2. Parameters of the chaos-hub method implementation 

Case 
θ0, 

rad 

φ0, 

rad 

ψ0, 

rad 

p0, 

1/s 

q0, 

1/s 

r0, 

1/s 

Δini, 

kg*m2/s 

Mspin, 

N*m 

t0, 

s 

tini, 

s 

thetero, 

s 

tstart, 

s 

tfinish, 

s 

μzBZ, 

N*m 

Ωz, 

1/s 

CHA 1.59 -0.98 -0.64 0.48 5.01 -0.46 1 -0.15 -50 -30 -25 0 66 2 3 

BHA 1.86 0.18 -0.07 3.33 1.93 -5.72 12.75 -0.5 -70 -50 -25 0 60 1 0.75 

AHC 1.33 -0.12 -0.80 -2.52 3.58 7.12 -24.75 1 -70 -50 -25 0 40 1 0.75 
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           (a)                         (b)   
 

 

      
           (c)                         (d)   
 

 

      
           (e)                         (f)   

Fig.8 – The case CHA of the SC attitude reorientation modeling 
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           (a)                         (b)   
 

 

      
           (c)                         (d)   
 

 

      
           (e)                         (f)   

Fig.9 – The case BHA of the SC attitude reorientation modeling 
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           (c)                         (d)   
 

 

      
           (e)                         (f)   

Fig.10 – The case AHC of the SC attitude reorientation modeling 
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Conclusion 

 

In this work, the chaos was explored as the positive phenomenon, which allows to change systems 

dynamics using the ability of the chaos to fill the available areas of systems phase space, and to 

interconnect the dynamical zones with the different behavior. These dynamical opportunities of the 

chaos arise due to phase trajectories mixing and infinite increasing distances between them. Such 

properties allow to consider the chaos as the hub of systems dynamics, linking the different areas of the 

phase space. 

In particular, the heteroclinic chaos was investigated in this paper as the instrument of the 

spacecraft attitude dynamics changing. The developed method of the spacecraft attitude control is based 

on the transfer of the dynamical regime close to the heteroclinic phase orbit (separatrix) with the 

subsequent intentional creation of the perturbations. These perturbations split the heteroclinic 

trajectories and generate the heteroclinic chaos. The perturbations are created by the control system with 

help of available actuators. At the fulfillment of necessary criteria, the control systems terminates the 

intentional perturbations and eliminates the chaos, and the spacecraft jumps from the chaos into new 

phase target-regime. 

As the actuators in this research the internal rotor with the electromotor and the magnetic torquer 

were considered. The simplicity of these types of actuators defines the possibility of real applications of 

the chaotic control scheme as attitude control systems even for simplest and smallest types of spacecraft, 

including nanosatellites. Moreover, this simple “chaotic” control can be used as the reserve scheme for 

parrying irregular motion modes and accidents. In any case, the described positive technical application 

of the chaos to the problem of the space flight has all the rights to its existence and to its further 

development. 

Summarizing all of the above, we can conclude, that different aspects of the chaos are very 

important not only for the fundamental (philosophical, physical and mathematical) point of view, but 

also are significant for the technical applications, including the problem of the spacecraft attitude 

dynamics and control. 
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